

GEOTECHNICAL DESIGN IN COASTAL LOUISIANA

- Pete Cali

Initial Development of Distributaries and Interdistributary Trough

Enlargement of Principal Distributary and its Natural Levees – Creation of Marshes in Trough

Maximum Development of Distributary and its Natural Levees – Creation of Swamp as Levee Subsides

Deterioration of Distributary – Advance of Swamp Over Subsiding Levees

Continued Subsidence with Partial Destruction of Marshes

Settlement

- A Initial Pumping
- **B** Minimal Uniform Pumping
- C Improved Surface Drainage and Levee Protection
- D Increased Development and Subsurface Drainage

Approximate subsidence history and estimated future subsidence for area in Kenner, Louisiana, north of Interstate 10 (Normalized for peat thickness of 8 feet).

DESIGN CONSIDERATIONS EARTHEN STRUCTURES

- SLOPE STABILITY
- UNDERSEEPAGE
- SETTLEMENT
- SUBSIDENCE
- FOUNDATION STRENGTH GAIN
- SUITABLE MATERIAL AVAILABILITY
- ACCESS AND HAUL ROADS
- CONSTRUCTION UNDER WATER

DESIGN CONSIDERATIONS ROCK DIKES AND BREAKWATERS

- STABILITY
- SETTLEMENT
- ROCK AVAILABILITY
- ACCESS
- FLOTATION CHANNELS

DESIGN CONSIDERATIONS STRUCTURES

- PILE CAPACITY
- SHEET PILES
- SETTLEMENT
- NEGATIVE SKIN FRICTION
- UNDERSEEPAGE CUTOFF
- SLIDING STABILITY
- TRANSITION TO EMBANKMENT
- ACCESS

GEOTECHNICAL DESIGN TOOLS

- EARTH (CONVENTIONAL COMPACTION)
- GEOTEXTILES
- STEEL SHEET PILES
- FRICTION PILES
- EXCAVATE AND REPLACE

NEW DESIGN TOOLS

- SLURRY WALLS
- DEEP SOIL MIXING
- MASS STABILIZATION
- ROLLER COMPACTED CONCRETE
- INTERNAL MECHANICAL STABILZATION
- STONE COLUMNS

OTHER CONSTRUCTION CONSIDERATIONS

- DAMAGE TO PUBLIC ROADS AND HIGHWAYS
- FLOTATION CHANNELS
- RELOCATIONS
- DRAINAGE
- ENVIRONMENTAL

Questions

Peter R. Cali, Ph.D., P.E.

Task Force Guardian

Engineering and Design

Phone (504) 862-1001

E-mail: peter.r.cali@mvn02.usace.army.mil

Generalized Stratigraphy Soil Properties

Ground surface El. 0

Peat, $\gamma = 90$ pcf, c = 150psf, w = 200%,

Swamp: $\gamma = 100 \text{ pcf}, c = 260 \text{psf}, w = 80\%$

Organics: $\gamma = 98 \text{ pcf,c} = 400 \text{ psf, w} = 160\%$

Silt, $\gamma = 117$ pcf, c = 200psf, $\emptyset = 15^{\circ}$, w=25%

Interdistributary clay: $\gamma = 102$ pcf, c = 400-800 psf, w = 40 to 60 %, PL=20, LL =70, LI=0.7

-52

Pleistocene Clay: $\gamma = 115$ pcf, c > 1,000 psf